Normal Vector Fields on Manifolds1

نویسنده

  • W. S. MASSEY
چکیده

2. Statement of results. We will be concerned with cohomology groups having as coefficients the integers, Z, or the integers mod 2, Z2. If Mn is an w-dimensional differentiable manifold, then WíElH'ÍM", Z2) denotes the îth Stiefel-Whitney class of the tangent bundle, and WiGH^M", Z2) denotes the ith dual Stiefel-Whitney class. Our first theorem gives a necessary condition for the existence of a normal vector field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Global Behavior of Differential Equations on Two-dimensional Manifolds1

The following is concerned with the in-the-large behavior of characteristics of differential equations on closed orientable manifolds. C+ will denote a positive semi-characteristic, C the set of co-limit2 points of C+, V the vector field defining the differential equation, M the manifold under consideration, and W the vector field orthogonal to V. In all that follows we shall assume that M is t...

متن کامل

Lightlike foliations of semi-Riemannian manifolds1

Using screen distributions and lightlike transversal vector bundles we develop a theory of degenerate foliations of semiRiemannian manifolds. We build lightlike foliations of a semiRiemannian manifold by suspension of a group homomorphism φ : π1(B, x0) → Isom(T ). We compute the basic cohomology groups of the flow determined by a lightlike Killing vector field on a complete semi-Riemannian mani...

متن کامل

A Gauss-Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds1

We consider a generalization of Riemannian geometry that naturally arises in the framework of control theory. Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a classical Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become l...

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010